
MetaPrompting: Learning to Learn Better Prompts

Abstract

Prompting method is regarded as one of the cru-001
cial progress for few-shot nature language pro-002
cessing. Recent research on prompting moves003
from discrete tokens based “hard prompts”004
to continuous “soft prompts”, which employ005
learnable vectors as pseudo prompt tokens and006
achieve better performance. Though show-007
ing promising prospects, these soft-prompting008
methods are observed to rely heavily on good009
initialization to take effect. Unfortunately, ob-010
taining a perfect initialization for soft prompts011
requires understanding of inner language mod-012
els working and elaborate design, which is013
no easy task and has to restart from scratch014
for each new task. To remedy this, we pro-015
pose a generalized soft prompting method016
called MetaPrompting, which adopts the well-017
recognized model-agnostic meta-learning algo-018
rithm to automatically find better prompt ini-019
tialization that facilitates fast adaptation to new020
prompting tasks. Extensive experiments show021
MetaPrompting tackles soft prompt initializa-022
tion problem and brings significant improve-023
ment on three different datasets (over 6 points024
improvement in accuracy for 1-shot setting),025
achieving new state-of-the-art performance.026

1 Introduction027

Enabling models to learn from a few labeled ex-028

amples, i.e., Few-Shot Learning (FSL), is one of029

the key steps toward more human-like artificial030

intelligence. Recently, taking advantage of large-031

scale Pretrained Language Models (PLM) (Brown032

et al., 2020), prompting-based methods achieve im-033

pressive results for few-shot learning of Natural034

Language Processing (NLP) (Gao et al., 2021; Liu035

et al., 2021a; Zhao et al., 2021).036

Prompting-based methods insert a piece of text,037

i.e. prompts, to the input examples, so that the few-038

shot task can be formulated as a (masked) language039

modeling problem. For example, say we want to040

classify the sentiment of the book review “I will041

Figure 1: Comparison between conventional soft-
prompting method (left) and proposed MetaPrompting
(right). x denotes the query sentence, and z is learnable
pseudo tokens in soft prompts. ϕ represents all train-
able parameters. MetaPrompting exploits optimization-
based meta-learning to find an initialization ϕmeta that
facilitates better and faster adaptation to new tasks.

never read it again.”, we can append a prompt “It 042

was” to the sentence, getting “I will never read it 043

again. It was”. It is natural to expect a higher prob- 044

ability from the PLM to generate “terrible” than 045

“great” then. Such converting bridges the gap be- 046

tween pre-training and target tasks. Consequently, 047

it has better transferability and less dependence on 048

target task data. 049

The performance of prompting methods is found 050

to be greatly affected by the design of prompts (Gao 051

et al., 2021). That is, a good prompt makes sig- 052

nificant difference. Early attempts take manually- 053

designed prompts or search prompts automatically. 054

Schick et al. (2020) and (Schick and Schütze, 2021) 055

explore to automatically identify label words. In 056
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pursuit of better performance compared to hand-057

picked prompts, Gao et al. (2021) proposes LM-058

BFF to search both prompt templates and label059

words. AutoPrompt (Shin et al., 2020) lever-060

ages gradient-based searching to find out the best061

prompts. These prompts consist of discrete to-062

kens, which limits the prompt search space. To fur-063

ther liberate the potential of prompts, recent works064

employ learnable vectors as prompt content and065

learn optimal prompts in continuous space, which066

is so-called “soft prompts” (Liu et al., 2021c; Li067

and Liang, 2021). Since they no longer require068

prompts to be composed of real words, these meth-069

ods greatly expand the possibilities of prompts and070

thus achieve better performance (Liu et al., 2021b).071

However, despite the promising prospects of soft072

prompts, learning a good prompt is still far from073

trivial. Because soft-prompts search for optimal so-074

lutions in an infinite continuous space, the choice of075

the starting point for the search (i.e., prompt initial-076

ization) becomes crucial. Soft-prompt is observed077

to be more sensitive to different initialization than078

discrete prompts in low data setting (Li and Liang,079

2021; Liu et al., 2021b). Unfortunately, creating080

a perfect prompt initialization requires both un-081

derstanding of LMs’ inner workings and trial-and-082

error. Lester et al. (2021) initialize soft prompt with083

the token embeddings of hand-crafted prompt di-084

rectly. Zhong et al. (2021b) search discrete tokens085

as better initialization, which shows better perfor-086

mance. What’s worse is that these initializations087

are task-bounded. Every time we confront a new088

task, the costly process of initialization design has089

to start from scratch.090

In this paper, to tackle the above issues, we let091

loose the prompt design of a specific task, but in-092

stead focus on obtaining a task general prompt093

initialization that facilitates faster and better adap-094

tation to new prompting tasks. Recently proposed095

optimization-based meta-learning algorithms, such096

as MAML (Finn et al., 2017) and Reptile (Nichol097

et al., 2018), achieve better adaption by learning a098

parameter initialization. Following their essence,099

we tackle soft prompt initialization problem by100

proposing MetaPrompting, which is a generalized101

soft prompting method powered by meta-learning102

algorithms. MetaPrompting learns general meta-103

knowledge from source domain tasks to form a104

better soft prompt initialization, and thus adapts105

faster and better across various target domain tasks106

(See Figure 1). Extensive experiments show that107

MetaPrompting achieves promising performance 108

with desired robustness. 109

We summarize the main contribution of this pa- 110

per as follows: 111

(1) We propose a novel prompting method 112

MetaPrompting, which employs optimization- 113

based meta-learning algorithm to find adaptive ini- 114

tialization for soft-prompt methods. To the best of 115

our knowledge, this is the first study of applying 116

meta-learning to prompting problem setting. 117

(2) We conduct extensive experiments on three 118

different datasets with various few-shot settings, 119

and results show the superiority of MetaPrompting 120

over normally fine-tuned soft-prompt methods and 121

SOTA meta-learning baselines. 122

(3) Further analysis experiments indicate that 123

MetaPrompting significantly alleviates soft prompt 124

initialization problem, and learns general meta- 125

knowledge to counter the instability of prompt vari- 126

ance. We also study MetaPrompting’s compatibil- 127

ity with different meta-learning methods and give 128

empirical analysis of their performance difference. 129

All code and data will be publicly available. 130

2 Preliminaries and Related Works 131

In this section, we review related work and provide 132

preliminaries about Language Model Prompting 133

and Meta-learning. 134

2.1 Prompting Language Models 135

Prompting methods are proposed to better apply 136

pre-trained language models to downstream tasks 137

by aligning them with pre-training tasks. For 138

Masked Language Models (MLMs), the first step 139

is to convert a sample text x to xprompt by insert- 140

ing prompt words which contain [MASK] tokens. 141

Taking the news headline classification task as an 142

example, the prompted text is given as: 143

xprompt = [CLS] x The topic is [MASK] . [SEP], (1) 144

where “The topic is [MASK]” are prompt tokens. 145

Then, we ask pre-trained MLM to complete the 146

prompted text xprompt, and the word to be filled 147

at [MASK] position is regarded as an answer. An 148

answer-label map is then used to convert the word 149

probability distribution at [MASK] to classifica- 150

tion results. For example, answers ‘arts’ and ‘cul- 151

ture’ can be mapped to label ‘ARTS & CULTURE’, 152

while ‘environment’ can be mapped to label ‘EN- 153

VIRONMENT’. The average probability of each 154

label’s corresponding answers is computed as the 155

label’s final probability. 156
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Early prompting methods, such as GPT-157

3 (Brown et al., 2020) and PET/iPET (Schick and158

Schütze, 2021), use hand-crafted prompt templates.159

Although promising results are achieved, the per-160

formance of these methods heavily relies on the se-161

lection of pre-defined prompt templates. Moreover,162

designing prompts is extremely time-consuming,163

and hand-crafted prompts may be sub-optimal.164

A number of recent works propose to automate165

the search of discrete prompt templates (Shin et al.,166

2020; Gao et al., 2021; Davison et al., 2019; Jiang167

et al., 2020; Haviv et al., 2021), while others treat168

prompt tokens as continuous trainable parame-169

ters (Li and Liang, 2021; Liu et al., 2021c; Qin170

and Eisner, 2021). In this work, we follow P-171

tuning (Liu et al., 2021c) to combine soft prompt172

and anchor tokens as templates. Instead of directly173

applying the model in few-shot tasks, however, we174

adopt meta-learning methods to find a better ini-175

tialization point for both soft prompt embeddings176

and MLM parameters, because they are very sen-177

sitive to initialization in few-shot settings (Li and178

Liang, 2021; Liu et al., 2021b). Note that a re-179

cent work (Zhong et al., 2021a) also learns prompt180

model on a number of source domain tasks, but181

their method consumes heavy human labor to de-182

sign hard prompts for each task, and directly fine-183

tunes the model without involving meta algorithms.184

2.2 Meta Learning185

Meta-learning algorithms can be classified into186

metric-based methods, model-based methods and187

optimization-based methods. Metric-based meth-188

ods such as Siamese Network (Koch et al., 2015),189

Matching Network (Vinyals et al., 2016) and Proto-190

typical Network (Snell et al., 2017), are proposed191

to learn a metric space that gathers similar samples192

and separates distinct ones. Model-based meta-193

learning algorithms use additional meta learners to194

assist model prediction (Graves et al., 2014; Mishra195

et al., 2018; Qiao et al., 2018).196

Different from above algorithms, optimization-197

based meta-learning methods learn to improve198

model’s optimization procedure. Optimization-199

based approach is more suitable for prompting200

models as it neither requires a specific task form201

(i.e., metric learning form) nor additional archi-202

tecture (e.g. memory-augmented components in203

model-based algorithms). Andrychowicz et al.204

(2016) and Ravi and Larochelle (2017) train re-205

current neural networks to transform vanilla gradi-206

x    z   topic is arts .
arts           Arts&Culture
culture
tech          Technology
politics      Politics
        :               :
        :               :

MLM

x    z   topic is        .

···
Trainable param
 
Frozen param
 
Sample text 
tokens
 
Soft prompt
tokens

x

z

···

Figure 2: An illustration of soft-prompting method. x
refers to the sample text, and z represents soft prompt
tokens. All trainable parameters are colored in blue,
while fixed ones are colored in grey.

ent descent direction for better optimization results. 207

MAML (Finn et al., 2017) optimizes model param- 208

eters to find a better initialization point, so that the 209

model can adapt faster and better to unseen tasks. 210

In addition to MAML, more elaborate methods also 211

learn inner loop gradient descent direction (Li et al., 212

2017) and inner step sizes (Antoniou et al., 2019). 213

Utilizing first-order derivatives, FOMAML (Finn 214

et al., 2017) and Reptile (Nichol et al., 2018) are 215

proposed to reduce the memory consumption of 216

high-order derivative calculation. 217

3 Method 218

Since prompt-based methods, especially those 219

adopting soft prompts, are very sensitive to pa- 220

rameter initialization (Li and Liang, 2021; Liu 221

et al., 2021b), we introduce optimization-based 222

meta-learning methods into prompting methods to 223

find better initialization points for prompt-based 224

models and further explore their capabilities in few- 225

shot scenarios. In this section, we first introduce 226

the prompt-based model tuning process used in our 227

method (§3.1), and then describe how to construct 228

Meta Prompting tasks (§3.2). Finally, we elaborate 229

and formulate the Meta Prompting tuning objective 230

and parameter updating strategies (§3.3 and §3.4). 231

3.1 Prompt-based Model Tuning 232

In this work, we use soft prompts with anchor to- 233

kens. As illustrated in Figure 2, prompt tokens 234

consist of soft tokens which are represented as 235

trainable parameters (blue) as well as anchor to- 236

kens which are fixed as the embeddings of specific 237

words (grey). Hard-soft combined prompt tem- 238

plates render the model more flexible, while pre- 239
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serving enough semantic information to trigger the240

MLM to produce correct predictions. Similar to241

P-tuning (Liu et al., 2021c), we implement transfor-242

mation layers on soft prompt embeddings, allowing243

them to escape from local minima smoothly.244

In this way, we define MLM parameters as θ and245

soft prompt token embeddings as ϕ. Given a few-246

shot task τ where Dτ = {(xi,yi)}i∈τ represents247

training samples, the prompt tuning objective can248

be formulated as follows:249

θ∗, ϕ∗ = argmin
θ,ϕ

LDτ (fϕ,θ)

= argmax
θ,ϕ

∑
(xi,yi)∈Dτ

logP (yi|xi;ϕ, θ),
(2)250

where L is the loss function, and fϕ,θ is prompt-251

based model parameterized by MLM parameters θ252

and soft prompt embeddings ϕ.253

Dτ contains few labeled data because of the high254

annotation cost in real-world scenarios. As a result,255

the initialization of parameters θ and ϕ are more256

than crucial to the model’s performance.257

3.2 Constructing Meta Prompting Tasks258

To get a better initialization point for parameters259

θ and ϕ, we propose to sample Meta Prompting260

tasks from accessible source data and conduct meta-261

training on these sampled tasks. This meta training262

process aims to simulate the model’s adaptation to263

new few-shot tasks.264

We sample each Meta Prompting task τi as:265

τi = (Dsupport
τi ,Dquery

τi ), (3)266

where Dsupport
τi indicates the support set and267

Dquery
τi indicates the query set in traditional few-268

shot learning settings. Note that meta training tasks269

and meta testing tasks should be sampled from dif-270

ferent domains, to prevent the model from simply271

memorizing training samples.272

3.3 Applying Meta-learning to Prompting273

Models274

After constructing Meta Prompting tasks, we train275

our prompting model on these tasks to find a276

better initialization point. Figure 3 illustrates277

the meta training and meta testing procedures of278

MetaPrompting. Given a Meta Prompting task τi,279

we clone the model’s parameters and simulate the280

adaption process of few-shot tasks by updating281

cloned model parameters θ0i and ϕ0
i on Dsupport

τi .282

The adaption objective is given in Equation (2), and283

this process can be formulated as:284

Back propagation

Clone Support
Set

Adapt lo ss

Adapt

Query
Set

Meta loss
Meta
loss

Meta
update

Meta training stage

Support
Set

Adapt lo ss

Query
Set

Adapt

Meta testing stage

Predictions

n

Soft prompt 
embeddings & 
MLM parameters

×

Figure 3: Meta training and testing procedures of
MetaPrompting.

θki = θk−1
i − α∇θk−1

i
LDsupport

τi
(fϕk−1

i ,θk−1
i

),

ϕk
i = ϕk−1

i − α∇ϕk−1
i
LDsupport

τi
(fϕk−1

i ,θk−1
i

),
(4) 285

where α indicates learning rate and k = 1, 2, 3, . . . 286

indicates the inner step. The goal of learning with 287

Meta Prompting tasks is to minimize the loss of 288

the adapted prompting model, which is parameter- 289

ized as fϕi,θi , on Dquery
τi . This objective can be 290

described as follows: 291

θobj , ϕobj = argmin
θi,ϕi

LDquery
τi

(fϕi,θi). (5) 292

Optimizing towards this objective is to mimic 293

real few-shot text classification scenarios, and en- 294

able prompting model to find a better initialization 295

point for fast adaptation to new tasks. Let β be the 296

learning rate when updating model parameters on 297

Dquery
τi , and H be Hessian matrix. We formulate 298

the second-order gradient of prompt parameter ϕ 299

computed on Dquery
τi in the following form: 300

ϕ← ϕ− β · gsecondϕ

= ϕ− β∇ϕLDquery
τi

(fϕi,θi)

= ϕ− β∇ϕi
LDquery

τi
(fϕi,θi) · ∇ϕ(ϕi)

= ϕ− β∇ϕi
LDquery

τi
(fϕi,θi)·

(I− αHϕ(LDsupport
τi

(fϕ,θ))),

(6) 301

where we assume ϕi is ϕ adapted for one inner 302

step on Dsupport
τi . In practice, inner steps can be in- 303

creased for better performance. Pre-trained MLM 304
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parameters θ is updated in the same way as prompt305

parameters ϕ in Equation (6).306

3.4 Stable and Memory-efficient Meta307

Prompt Learning308

Although broadly used in meta-learning tasks,309

MAML suffers from training instability and ex-310

ploding memory consumption when model size311

and inner step grow. To address the first problem,312

we follow Antoniou et al. (2019) to introduce Multi-313

Step Loss Back-propagation (MSLB) into prompt-314

ing model tuning process. In this way, prompting315

model parameters receive optimization information316

from each inner step during adaptation, alleviat-317

ing the vanishing/exploding gradient problem in318

the stacked deep neural architecture constructed in319

adaptation process.320

As for the exploding memory consumption is-321

sue, we also explore to combine memory-efficient322

alternatives such as FOMAML (Finn et al., 2017)323

and Reptile (Nichol et al., 2018) with prompting324

model. FOMAML removes the high-order deriva-325

tives term in Equation (6), providing a cheap ap-326

proximation for MAML. Reptile updates model327

parameters towards the optimal point of each task,328

which is obtained by adapting the model on the329

support set samples. Equipped with these algo-330

rithms, MetaPrompting can learn meta knowledge331

with limited memory consumption.332

4 Experiment333

We conduct experiments by evaluating the pro-334

posed methods on three widely-used benchmark335

datasets with various low resource settings.336

4.1 Dataset337

Following Bao et al. (2019); Xu and Xiang (2021),338

we use the following three text classification339

datasets for experiments, which provide well-340

founded benchmarks for the meta-train & meta-test341

setting and vary in domain and text length.1342

HuffPost headlines contains around 200, 000343

news headlines from 2012 to 2018 obtained from344

HuffPost (Misra, 2018). These headlines cover 41345

news categories and the average text length is 11.346

Amazon product data contains around 240000347

product reviews from 1996 to 2014 from Ama-348

zon (He and McAuley, 2016). These reviews con-349

1For other datasets used in Bao et al. (2019), RCV1 (Lewis
et al., 2004) is not included due to overly long text lengths,
while Reuters (Lewis, 1997) and FewRel (Han et al., 2018)
are excluded because of ambiguous label semantic meanings.

tain 24 categories corresponding to their respective 350

product categories with varying text lengths. The 351

average text length is 140. 352

20 Newsgroups (Lang, 1995) contains 18, 820 353

newsgroup documents of 20 different topics. We 354

used 20news-18828 version following Bao et al. 355

(2019). The average text length is 340. 356

Regarding the categories selection of training, 357

validation and testing sets, we use the same setting 358

as Bao et al. (2019). Besides, we follow the same 359

procedure to sample more tractable data subsets 360

from the original datasets. 361

4.2 Implementation 362

We use the pre-trained BERT (bert-base-uncased) 363

with HuggingFaces codebase (Wolf et al., 2019) as 364

the pre-trained language model. 365

For soft prompting model, we follow Liu et al. 366

(2021c) to use a two-layer biLSTM and a two-layer 367

MLP to transform soft-prompt embeddings. We di- 368

vide the learnable parameters of prompting model 369

into two parts: pre-trained model and prompt em- 370

beddings. AdamW (Loshchilov and Hutter, 2018) 371

is used to optimize two types of parameters, with 372

initial learning rates of 1e−5 and 5e−5, respec- 373

tively. For pre-trained model parameters, we set 374

weight decay to 0.1. We also adopt linear warmup 375

and linear decay strategy for learning rates. Batch 376

size is set as 16 for all stages, and the model adapts 377

for 15 epochs on test episodes. We run 3 indepen- 378

dent runs with random seeds for each setting. 379

Before meta-training stage, we generate 10, 000 380

training episodes, 2, 500 validation episodes and 381

1, 000 testing episodes comprehensively and ran- 382

domly. During the training stage, we train the 383

model with 100 sampled training episodes per 384

epoch. When there is no validation accuracy in- 385

crease for 10 epochs, we apply early stopping. For 386

meta-testing, we test the model on all 1, 000 test 387

episodes and report the average accuracy. 388

4.3 Baselines 389

We compare with the following baselines: 390

1-NN is a 1-nearest-neighbor classifier based on 391

Euclidean distance. 392

FT (Chen et al., 2019) pre-trains a classifier on 393

source domain data, and then fine-tunes (FT) it on 394

each support set before evaluation. 395

RR (Bertinetto et al., 2019) adopts ridge regres- 396

sion (RR) for classification. 397

MAML (Finn et al., 2017) meta-learns a classi- 398

fier with MAML algorithm, so that the model can 399
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Method 20 News Amazon HuffPost Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

1-NN 38.8 51.9 51.4 67.1 31.5 42.3 40.5 53.7
FT 33.0 47.1 45.7 63.9 32.4 44.1 37.0 51.7
PROTO 37.8 46.5 41.9 59.2 34.8 50.2 38.1 51.9
MAML 37.2 48.6 43.6 62.4 38.9 53.7 39.9 54.9
RR 44.8 64.3 60.2 79.7 37.6 59.5 47.5 67.8
DS (2019) 52.1 68.3 62.6 81.1 43.0 63.5 52.5 70.9
DE-MLMAN (2021) − − − − 49.7 60.9 − −
DE-MAML (2021) − − − − 51.8 67.3 − −
DE-PROTO (2021) − − − − 52.3 69.6 − −
KGML-PROTO (2021) − − 58.6 74.5 42.3 58.7 − −
KGML-MAML (2021) − − 51.4 58.8 44.2 54.1 − −
P-TUNING (2021c) 56.21 77.70 62.18 79.13 54.48 65.75 57.62 74.19
FROG-GNN (2021) − − 71.5 83.6 54.1 69.6 − −
LASAML-PN (2021) − − − − 62.1 70.1 − −
CONTRASTNET (2022) 71.74 81.57 76.13 85.17 53.06 65.32 66.78 77.35

OURS (PRETRAIN INIT) 68.42±0.06 79.11±0.79 75.12±0.65 83.27±0.03 70.82±0.74 75.47±0.24 71.45 79.28
OURS (META INIT) 68.83±0.21 82.95±0.12 77.65±0.47 85.54±0.03 71.93±0.22 76.32±0.05 72.80 81.60

Table 1: Results of 1-shot and 5-shot classification on three datasets in terms of accuracy. The rows below the
mid-line are results of MetaPrompting. ‘-’ means that the result of this dataset is not given in the original paper.

adapt faster and better to target domain tasks.400

Prototypical network (Snell et al., 2017) is a401

metric-based method which meta-learns a metric402

space by minimizing the Euclidean distance be-403

tween the centroid of each category and the corre-404

sponding samples.405

DS (Bao et al., 2019) is trained within a meta-406

learning framework to map the distribution signa-407

tures (DS), i.e., characteristics of the underlying408

word distributions, into attention scores to extract409

more transferable features.2410

DE (Ohashi et al., 2021) generates distinct label411

representations that embed information specific to412

each label to aid classification tasks. During exper-413

iments, it is combined with MAML (DE-MAML)414

and prototypical network (DE-PROTO), as well as415

MLMAN (Ye and Ling, 2019) (DE-MLMAN).416

KGML (Yao et al., 2021) extracts additional rep-417

resentation for each sentence from external knowl-418

edge base, to bridge the gap between meta-training419

and meta-testing tasks. During experiments, it420

works with MAML (KGML-MAML) and proto-421

typical network (KGML-Proto).422

P-tuning (Liu et al., 2021c) is a prompt-based423

method that uses masked language model to con-424

vert target tasks into cloze problems. It employs425

soft-prompting techniques to optimize prompts in426

continuous space.427

Frog-GNN (Xu and Xiang, 2021) is a graph428

neural network based method, which extracts bet-429

2The above 6 baselines uses fastText embeddings (Joulin
et al., 2016) and each word’s inverse document frequency to
produce sentence embeddings.

ter query representations with multi-perspective 430

aggregation of graph node neighbors. 431

LaSAML-PN (Luo et al., 2021) is a meta- 432

learning framework that mines semantic informa- 433

tion in labels and attaches it to the sentence as the 434

input of the encoder to obtain discriminative sen- 435

tence embeddings. 436

ContrastNet (Chen et al., 2022) is the SOTA 437

method. It introduces instance-level and task-level 438

regularization loss into vanilla contrastive learn- 439

ing model based on BERT representations for bet- 440

ter generalization performance. The regularization 441

loss is computed with samples augmented by an 442

additional BERT model. 443

4.4 Main Results 444

We evaluate the proposed methods in both 5-way 445

1-shot and 5-way 5-shot settings and report perfor- 446

mance on three different datasets with different text 447

styles. As shown in Table 1, our model outperforms 448

previous SOTA method ContrastNet without using 449

additional PLM. Averagely, our model improves 450

1-shot accuracy by 6.02 (9.01% ↑) and 5-shot ac- 451

curacy by 4.25 (5.49% ↑) across 3 datasets. Note 452

that 20Newsgroup and Amazon’s labels are hard to 453

interpret as natural words and 20Newsgroup’s text 454

lengths sometimes exceed BERT’s capability, so 455

MetaPrompting gains less improvement on these 456

two datasets. 457

Meanwhile, we have following observations 458

based on Table 1: 459

(1) Compared with other soft-prompting meth- 460

ods, i.e., P-tuning, our method obtains superior re- 461
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sults. The improvement mainly comes from using462

meta-learning to learn the better prompt initializa-463

tion, which allows faster and better adaption to new464

prompting tasks.465

(2) When compared to traditional supervised466

learning methods, such as FT, all prompt-based467

methods achieve significant improvements, which468

demonstrates the effectiveness of prompting mech-469

anism in narrowing the gap between pretraining470

and downstream tasks.471

(3) Metric learning-based baselines, such as472

ContrastNet and LASAML-PN, perform as the473

strongest baselines on Amazon and HuffPost474

datasets, respectively. We find that directly using475

prompt-based method may not necessarily perform476

better, because of the absence of domain-related477

initialization. The proposed MetaPrompting allevi-478

ates the above issue and achieves new state-of-the-479

art performance. Among strong metric-learning480

baselines, Frog-GNN conducts transductive learn-481

ing with additional label propagation information,482

and ContrastNet uses an additional BERT model483

to regularize the main model with augmented data.484

Our model achieves better performance without485

implementing any of above tricks.486

(4) Compared with other optimization-based487

meta-learning methods such as MAML, DE-488

MAML and KGML-MAML, MetaPrompting con-489

sistently performs better, demonstrating good com-490

patibility between prompting methods and meta-491

learning. Note that KGML-MAML adopts an addi-492

tional knowledge base, while our model does not493

but still achieves better performance.494

(5) For ablation study of OURS (PRETRAIN495

INIT), we remove the Meta Prompt Objective and496

learn an initialization by pre-training soft prompt497

model on the Meta Prompting Tasks described in498

Section 3.2. Performance drops are witnessed499

across all three datasets and low-data settings,500

demonstrating the necessity of meta objectives in501

finding a better initialization.502

4.5 Analysis503

In this part, we analyze the proposed method from504

different aspects.505

MetaPrompting tackles soft prompt initializa-506

tion problem. To further validate the importance507

of learning a good prompt initialization, we freeze508

PLM’s parameters while leaving soft prompt pa-509

rameters unfrozen to only learn a better prompt510

initialization on source domains. We test our meta-511

Method HuffPost Amazon 20 Newsgroup

BASELINE 65.75 79.13 77.70
OURS 73.06 83.64 81.79

Table 2: PLM frozen, MetaPrompting still achieves
better performance over randomly initialized baseline
on test domains. Results are given in 5 shot setting.

Source domain Target domain Acc

− HuffPost 65.75
Metatuning HuffPost 67.46

20 Newsgroup HuffPost 71.04
Amazon HuffPost 71.47

HuffPost (Diff. label set) HuffPost 76.32

Table 3: Given irrelevant source domain data,
MetaPrompting still learns meta knowledge to improve
the performance on target domains.

learning-based initialization strategy against ran- 512

dom initialization, and the results are shown in 513

Table 2. The randomly initialized soft prompt 514

baseline performs poorly and unstably, while our 515

method consistently yields better results with lower 516

variance across 3 datasets, which verifies our hy- 517

pothesis and the validity of the MetaPrompting. 518

MetaPrompting learns general meta-knowledge 519

from various source domains. We conduct 520

meta-training on Out-Of-Domain (OOD) tasks, to 521

better understand MetaPrompting’s ability to trans- 522

fer meta-knowledge from various source domains. 523

Table 3 shows the results of 5-shots setting. Even 524

given irrelevant meta-training data and prompt 525

templates from other datasets, MetaPrompting 526

still learns meta knowledge to tackle target do- 527

main tasks and outperforms the baseline robustly. 528

Among OOD datasets, Metatuning (Zhong et al., 529

2021a) contains a series of text classification 530

tasks, and each task is accompanied by several 531

hand-crafted questions which require yes/no an- 532

swers. The task formulation of Metatuning is 533

distinct from HuffPost. However, MetaPrompt- 534

ing still makes it to transfer meta-knowledge from 535

Metatuning to HuffPost’s target domains, improv- 536

ing model performance by approximately 2 points. 537

Although MetaPrompting’s performance varies 538

among source domain tasks according to their data 539

quality for generalization purposes, the proposed 540

model outperforms the baseline across all source 541

domain tasks, verifying MetaPrompting’s effective- 542

ness in transferring meta-knowledge. 543
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Method HuffPost Amazon
1 shot 5 shot 1 shot 5 shot

P-TUNING ±3.46 ±1.90 ±5.30 ±1.85
OURS ±0.23 ±0.09 ±0.17 ±0.45

Table 4: Analysis for anti-disturbance against changing
of prompting form.

Anti-disturbance analysis We expect the meta-544

learned initialization alleviates prompting models’545

susceptibility to varying prompt forms. To verify546

this, we test the prompting model with multiple dif-547

ferent prompt forms and report the standard devia-548

tion. Specifically, we add two more discrete prompt549

templates, and randomly replace the template to-550

kens with pseudo tokens to test MetaPrompting’s551

robustness across different templates.3552

Table 4 shows the results. While changing the553

prompting form indeed impacts the performance554

for both our method and normal soft prompting555

methods, the proposed meta-learning method sig-556

nificantly reduces performance fluctuation, show-557

ing impressive anti-disturbance ability. Therefore,558

the proposed method is promising in real-world559

applications, because prompt designing requires560

heavy workload and domain-specific knowledge.561

Applying MetaPrompting significantly reduces the562

cost of prompt engineering.563

Applying different meta-learning methods to564

prompting models. In this part, we conduct em-565

pirical analysis on different optimization-based566

meta-learning methods applied in prompting mod-567

els. Results are shown in Table 5. Stabilizing568

MAML training procedure, MAML++ performs569

the best among all methods, while Reptile fails570

to achieve comparable performance with others.4571

We attribute Reptile’s low performance to PLM’s572

sensitivity to parameter tuning process, which can573

be distorted by Reptile’s parameter updating strat-574

egy. MAML and FOMAML show similar results,575

because MetaPrompting’s slow tuning process nar-576

rows the gap between their calculated gradient dur-577

ing meta-training.578

3We add “The topic/product category: [MASK]. Input: x”
and “x. What is the topic/product category ? [MASK].”,
where topic and product category are used for HuffPost and
Amazon dataset respectively.

4We only include the MSLB trick of MAML++ (Antoniou
et al., 2019) due to the incompatibility (BN layer tricks) or triv-
ial performance improvement (Per-step adaption loss, cosine
annealing learning rates).

Setting MAML++ MAML FOMAML Reptile

1 SHOT 71.93 71.43 70.56 69.76
5 SHOT 76.32 76.04 76.08 74.09

Table 5: MetaPrompting’s performance with different
meta learning methods.
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Figure 4: Analysis on prompt learning process.

Analysis for learning procedure of prompting 579

methods. We analyze the decreasing trend of 580

adaptation loss to better understand the learning 581

procedure of soft-prompt model. Specifically, we 582

visualize model adaptation loss curve during meta- 583

testing on 5 shot Amazon dataset. 584

As shown in Figure 4, task-related initialization 585

(Ours (Pretrain Init)) helps the model converge 586

faster and end up at a lower position than randomly 587

initialized baseline. The proposed meta-learning- 588

based method (Ours (Meta Init)) further improves 589

the learning process in new tasks, indicating that 590

the meta-learned initialization point contains more 591

generalizable meta knowledge to aid new tasks. 592

5 Conclusion 593

In this paper, we introduce a generalized 594

optimization-based meta-learning approach 595

MetaPrompting for few-shot NLP problems. 596

Utilizing sampled meta tasks and meta-learning- 597

based optimization, MetaPrompting learns to 598

find an initialization that alleviates soft prompt 599

initialization problem, and allows better and faster 600

adaption to new tasks. Extensive experiments 601

on three few-shot learning benchmarks show 602

that MetaPrompting significantly outperforms 603

vanilla soft-prompting models and strong meta- 604

learning baselines, achieving new state-of-the-art 605

performance. 606
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