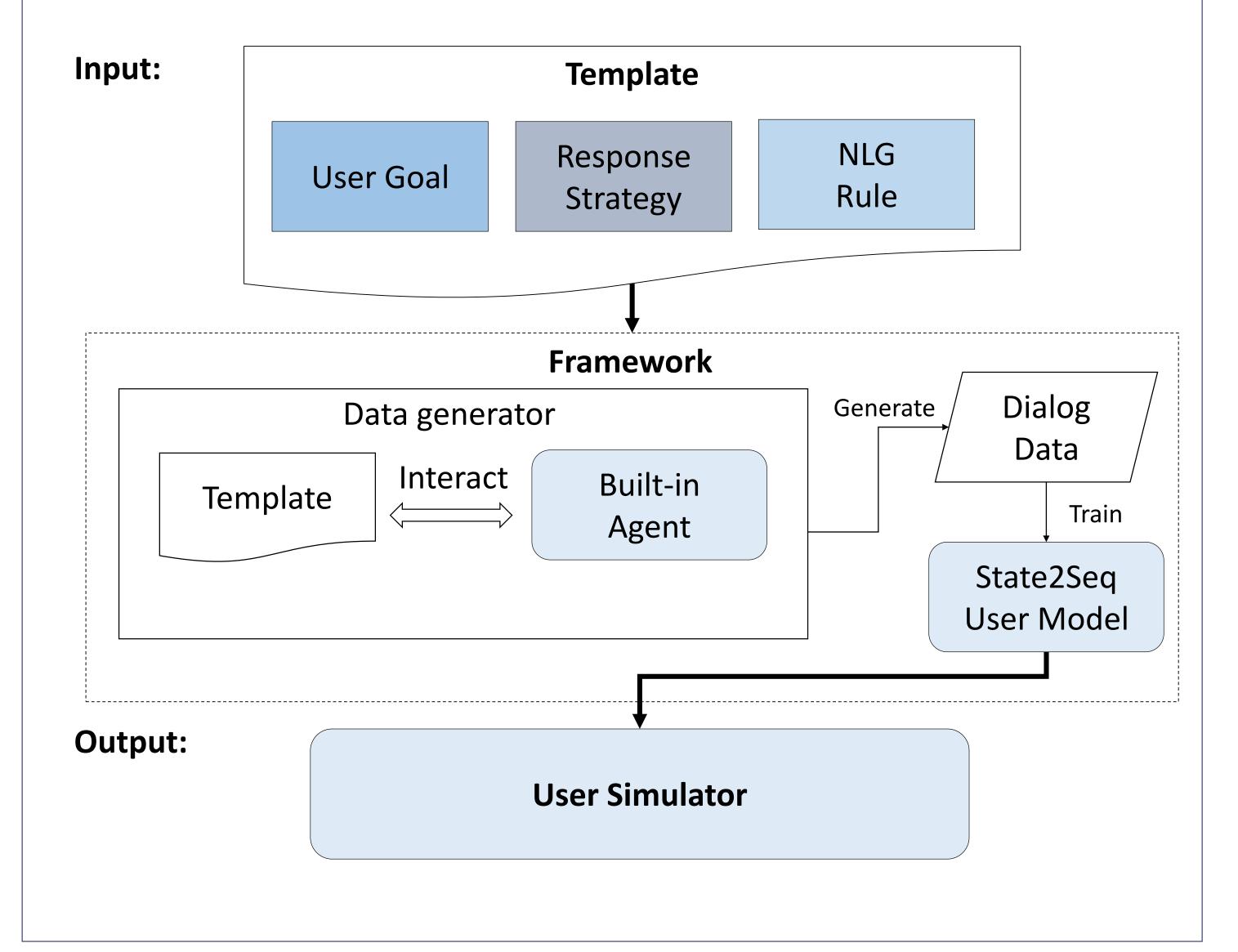


A Corpus-free State2Seq User Simulator for Task-oriented Dialogue

Yutai Hou⁺, Meng Fang[‡], Wanxiang Che⁺, Ting Liu⁺ +Harbin Institute of Technology, ‡ Tencent Robotics X

1. Introduction


Why User Simulator (US)?

Training of multi-turn dialog agent faces unavoidable obstacle: (1) It's hard to decide the best action for a single turn. (2) Annotated dialogue corpora are often unavailable. To addressing these, it's popular to train an agent with RL algorithm and *a user simulator* as training environment.

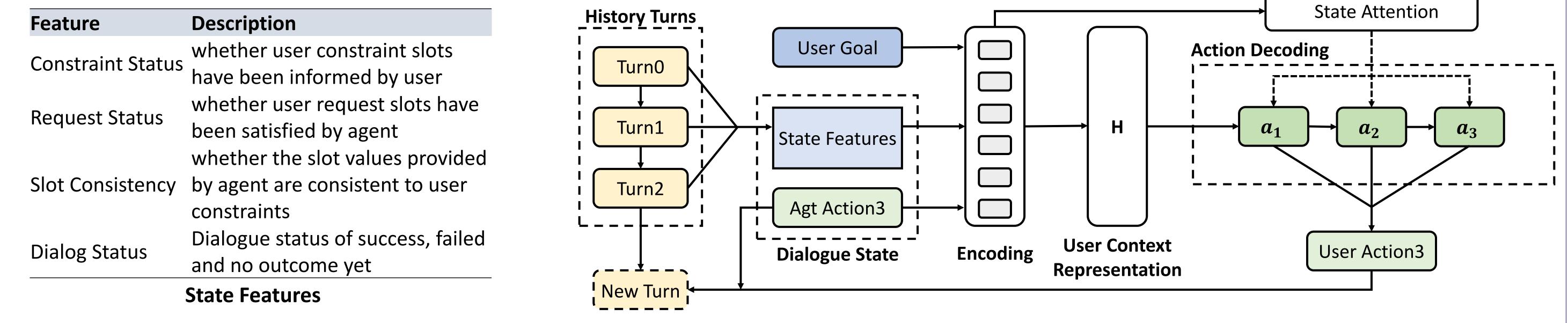
What are the challenges for User Simulator (US)? \bullet (1) Traditional US: Based on rules and lack response diversity.

2. Framework Overview

The framework builds a new State2Seq user simulator with no data but only a few templates.

(2) Data-driven US: Better in diversity but suffer from data scarcity.

How do we solve the challenges? \bullet


(1) We design a new corpus-free framework that taking advantage of both two above user simulators' benefits.

(2) We propose a State2Seq model by introducing the attention mechanism and to model user behavior better.

3. State2Seq User Simulator

To generate better response, our State2Seq user simulator model leverages attention over dialogue state and history.

Feature	Description		
Construction Chatters	whether user constraint slots		
Constraint Status	have been informed by user		
Request Status	whether user request slots have		
	been satisfied by agent		
	whether the slot values provided		

4 Experiment

Evaluation of trained agent policy. lacksquare

Model	Movie Booking			Restaurant Reservation		
	Avg. Succ.	Avg. Rwd.	Avg. Turns	Avg. Succ.	Avg. Rwd.	Avg. Turns
State2MLC	0.487	8.55	21.82	0.305	-17.22	29.69
State2Seq	0.551	14.17	25.85	0.524	11.77	24.21
Seq2Seq	0.412	-3.49	27.77	0.501	6.23	29.83
Seq2Seq-Att	0.430	-2.59	30.39	0.514	9.67	26.20
Agenda	0.438	-2.88	32.88	0.508	10.88	22.17

Evaluation of agent policy trained by different user model. Results above dash-line are from our model, which achieve best performance in most task.

Evaluation of trained agent policy. \bullet

	Action Accuracy		Generalization Ability Test			
Model	Movie Restaurant		Movie		Restaurant	
	 F1	F1	Avg. Succ.	Avg. Rwd.	Avg. Succ.	Avg. Rwd.
State2MLC (Ours)) 0.704	0.695	0.442	6.06	0.436	5.34
State2Seq (Ours)	0.711	0.683	0.400	5.51	0.484	11.09
Seq2Seq	0.692	0.662	0.063	-31.87	0.126	-31.87
Seq2Seq-Att	0.705	0.677	0.000	-46.99	0.000	-46.99
Agenda	N/A	N/A	0.392	0.04	0.410	2.20

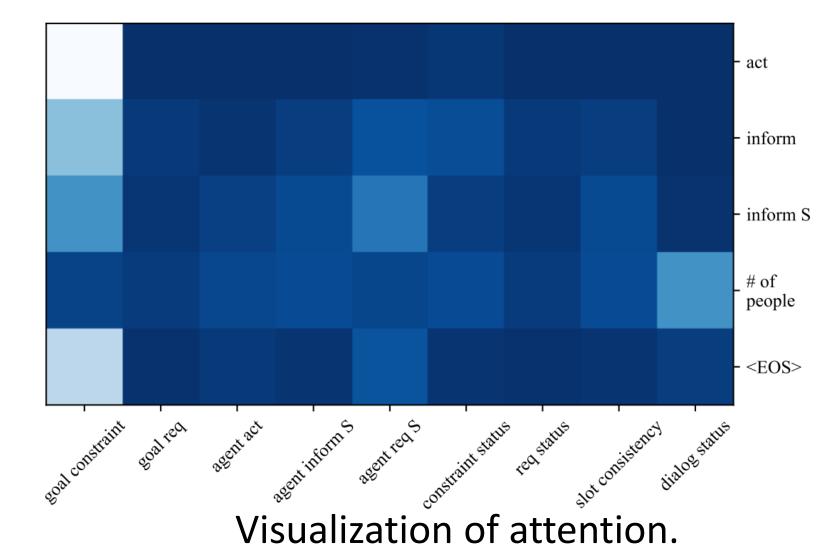
Evaluation of user simulator model

Model Avg. Succ. Avg. Rwd. Avg. Turns

Context:

Actions:

State2Seq (Ours)	0.778	53.88	11.88
Agenda	0.571	22.29	14.57


Human evaluation of trained agent

	Model	Succ.	Avg. Rwd.	Avg. Turns
	State2MLC (Ours)	0.628	26.19	16.36
	State2Seq (Ours)	0.800	48.39	17.23
	Seq2Seq	0.462	2.98	28.92
	Seq2Seq-Att	0.480	2.11	32.98
\sum	Agenda	0.814	50.36	15.66

Analysis of agent models' overfitting to training environment.

agt: How many tickets do you need? usr:I want 2 tickets please!

act:req, inform S:{}, req S:{# of people} act:inform, inform $S:\{\# \text{ of people:}2\}$, req $S:\{\}$

Get paper here

Agents are likely to overfit to

rule-based user simulator

environment.

